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Magnetic coupling of two-dimensional pancake vortex lattices in a finite stack of thin
superconducting films with transport currents in the two outermost layers

Thomas Pe, Maamar Benkraouda, and John R. Clem
Ames Laboratory–U.S. Department of Energy and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 5

~Received 18 June 1996!

We give a detailed study of the magnetic coupling between two-dimensional~2D! pancake vortices in a
stack ofN Josephson-decoupled superconducting thin films. The problem of a single pancake vortex in a finite
stack of layers is first considered. We then investigate the magnetic interaction between 2D pancake lattices
residing in different layers. It is assumed that all these 2D lattices have the same structure and orientation,
although it is not required that they be in perfect registry. We derive an analytical solution for the coupling
force on a pancake in a lattice arising from its interaction with a vortex lattice in another layer. As a direct
application of this solution, we consider the case wherein a magnetic field is applied perpendicular to the layers
and equal but oppositely directed surface current densities are introduced into the top and bottom layers,
respectively. For weak currents, force-balanced configurations of pancake vortices are obtained. We then show
the existence of a decoupling surface current density. Above this critical value, slippage occurs between 2D
pancake lattices in different layers. This decoupling surface current density is then calculated for different
magnetic fields and for different values ofN. @S0163-1829~97!06901-4#
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I. INTRODUCTION

The high-Tc cuprates have given renewed impetus in
cent years to the study of layered superconductors. Bec
of the large anisotropy between thec axis and the CuO2
planes in the Bi- and Tl-based compounds, it is not poss
to construct a satisfactory phenomenological description
ing continuum Ginzburg-Landau or London formulation
Organic layered superconductors and the more recently s
ied epitaxially grown multilayer structures1–8 are two other
examples of systems that are best modeled by a discret
of weakly coupled superconducting layers.

Vortices in these layered materials differ remarkably
structure from Abrikosov vortices. For instance, tilted lin
of Abrikosov vortices in continuous superconductors are
placed in the layered materials by tilted stacks of intrala
two-dimensional~2D! pancake vortices joined by interlaye
Josephson strings. The description of vortices in laye
structures within the Lawrence-Doniach model9–12 has been
treated extensively in the literature.13–16 The Lawrence-
Doniach description has been further simplified by entir
disregarding the effects of the weak interlayer Joseph
coupling. This approach has proven to be useful in studie
vortex-lattice melting at low fields.17,18 In particular, it is
shown in Ref. 18 that the characteristic shape of the low-fi
3D melting line is obtained when interlayer electromagne
interactions are taken into account and Josephson coup
entirely neglected.

Within this model, the layered superconductor is taken
an array of parallel thin films, wherein 2D pancake vortic
residing in different layers can interact with each other o
via magnetic coupling.13,14,19–21 For an applied magnetic
field parallel to thec direction, these vortices form straigh
stacks. Because currents can flow only within the superc
ducting layers, a nonzero component of the applied field p
allel to the layers exerts zero net force on any 2D panc
550163-1829/97/55~10!/6636~8!/$10.00
-
se

le
s-
.
d-

set

-
r

d

y
n
of

ld
c
ng

s
s
y

n-
r-
e

vortex. This means that even in the presence of an app
field tilted relative to thec axis, the stacks of Josephso
decoupled 2D pancake vortices remain perpendicular to
layers. The only way to destroy this alignment of pancak
would be to apply transport currents to the superconduc
layers. In the absence of interlayer Josephson coupl
transport current injected into a given layer remains stric
confined to that layer. A Lorentz force acts only on the pa
cake vortices residing in the layer where current flows. N
ertheless, pancake vortices in different layers are magn
cally coupled to each other, so that any current-induc
motion of pancakes in a given layer gives rise to motion
pancakes belonging to current-free layers. This is essent
the idea behind the early work on dc flux transformers22–27

and the more recent experiments done on highTc
superconductors.28–33

None of the theoretical work cited above has incorpora
the effects arising from the finite number of superconduct
layers present in real samples. This is regrettable, espec
if one wishes to model experiments similar to those on
flux transformers where transport currents are injected
the outermost layers of the sample. An attempt has b
made in Ref. 34 to calculate the magnetic field and curr
distribution generated by a single 2D pancake vortex in
finite stack of Josephson-decoupled superconducting lay
This approach involves replacing all the screening lay
above and below the 2D pancake layer with a supercond
ing continuum that allows supercurrents to flow only para
to the layers.

We present in this paper a thorough investigation of
magnetic coupling between 2D pancake vortices in a stac
N superconducting films with no Josephson coupling, tak
into account the full discreteness of the layered structure.
give an analytical solution for the magnetic force exerted
a 2D vortex lattice on a pancake vortex belonging to anot
lattice in a different layer. It is assumed that these two l
6636 © 1997 The American Physical Society
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55 6637MAGNETIC COUPLING OF TWO-DIMENSIONAL . . .
tices have the same structure and are displaced~not rotated!
relative to each other. As an application, we study the
sponse ofN perfectly triangular 2D pancake lattices~one in
each layer! to two equal but oppositely directed current d
tributions flowing in the top and bottom layers. For simpli
ity, we assume that these currents flow perpendicular
nearest-neighbor direction. The spatial configuration of
2D pancake vortices is determined for sufficiently weak
plied currents. We also demonstrate the existence of a m
mum surface current density; above this value, slippage
curs between pancake lattices in different layers. Lastly,
determine the magnitude of this decoupling current den
for different values ofN and for different magnetic fields
applied along thec axis.

II. SINGLE PANCAKE IN A FINITE STACK OF THIN
SUPERCONDUCTING LAYERS

We begin by calculating the magnetic vector potential
a 2D pancake vortex in a stack ofN superconducting layers
It is assumed throughout that no Josephson coupling
present between the layers. We also emphasize that th
fects of thermal fluctuations or pinning within the layers a
not taken into account.

Defining s to be the interlayer spacing, we consider ea
of theN layers as a thin film whose thicknessd is much less
than the bulk penetration depthls . Assume that the bottom
layer coincides with the planez50. Hence, we can referenc
the layer atz5ns by the integern ~with 0<n<N21.! Let
layerm correspond to the pancake layer. For the time be
choose the pancake to be centered on thez axis. ~Refer to
Fig. 1.!

We adopt an approach similar to that in Ref. 20. In cyl
drical coordinates, the vector potential has only one nonz
component,

FIG. 1. A single 2D pancake vortex in a finite stack ofN super-
conducting layers. Zero Josephson coupling between the laye
assumed and no thermal fluctuations or pinning within the layer
taken into account. The interlayer spacing iss, and each layer is
referenced via an integer indexn ranging from 0 toN21. Thez
axis is perpendicular to the layers, such thatz5ns. Hence, the
plane z50 coincides with the bottom layer. Lastly,n5m corre-
sponds to the layer containing the 2D pancake vortex.
-
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aw~r,z,m!5E
0

`

dqA~q,m!J1~qr!Z~q,z,m!, ~1!

whereJ1(qr) is the first-order Bessel function of the firs
kind. Z(q,z,m) has the following forms: forn<z/s<n11,
0<n<N21,

Z~q,z,m!5
1

sinhqs
$e2Qn,mun2mussinhq@~n11!s2z#

1e2Qn11,mun112mussinhq~z2ns!%; ~2!

for z/s5n, 0<n<N21,

Z~q,z,m!5e2Qn,mun2mus; ~3!

otherwise,

Z~q,z,m!

5H e2QN21,m~N212m!se2q[z2~N21!s] , z/s.N21

e2Q0,mmseqz, z/s,0.
~4!

A(q,m) and the exponential termse2Qn,mun2mus given above
are solved subject to two conditions.

The first condition is the equation relating the vector p
tentialaw and the sheet current densityKw generated by the
single pancake: for 0<n<N21,

Kw~r,n,m!52
c

2pL Faw~r,z,m!U
z5ns

2
fo

2pr
dn,mG .

~5!

The 2D thin-film screening lengthL is here defined as
2ls

2/d. ~As mentioned in Ref. 20, some papers in the lite
ture defineL without the factor of 2.! A symbol such as
]w denotes a partial derivative with respect to the subscrip
coordinate. For the phaseg of the order parameter, we hav
used the gaugeg52w for n5m andg50 otherwise.fo is
the flux quantumhc/2e and dn,m is the usual Kronecker
delta.

The second condition givesKw in terms of the disconti-
nuity in the radial component of the magnetic field acros
layer. In terms of the vector potentialaw , we can write this
condition as

Kw~r,n,m!52
c

4p
@]zaw~r,z,m!uz5ns1

2]zaw~r,z,m!uz5ns2#, ~6!

for 0<n<N21. Let us combine this with the first conditio
by eliminatingKw . We arrive at the following condition for
the vector potential at any layer 0<n<N21:

aw~r,z,m!uz5ns5
L

2
@]zaw~r,z,m!uz5ns1

2]zaw~r,z,m!uz5ns2#1
fo

2pr
dn,m .

~7!

We can substitute our expression for the vector potential
the above condition. Taking the Hankel transform of bo
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sides of the resulting equation, we arrive at solutions
A(q,m) and the quantitiese2Qn,mun2mus.

In order to write the aforesaid solutions explicitly, w
introduce two functions:

f ~q!5~112/qL!sinhqs1coshqs, ~8!

g~q!52 @~1/qL!sinhqs1coshqs#. ~9!

From these, we can construct the following set:

h~q,n>0!5H e2qs, n50,

1/f ~q!, n51,

1/@g~q!2h~q,n21!#, n.1.

~10!

In terms of the above quantities,

e2Qn,mun2mus

55 )
p50

m2n21

h~q,m2p!, 0<n<m21,

1, n5m,

)
p50

n2m21

h~q,N212m2p!, m11<n<N21,

~11!

and

A~q,m!5
fosinhqs

pqL@g~q!2h~q,N212m!2h~q,m!#
.

~12!

Aside froms andL, there is another important length i
the problem. This is the effective penetration depthl i for the
decay of fields induced by currents flowing parallel to t
layers. This is defined byl i5sls

2/d. It follows from this
definition that20

L52l i
2/s. ~13!

We assign values tos andl i that are characteristic of on
of the high-temperature superconductors.~The validity of the
above results are, nevertheless, not confined to such val!
In Bi-2212, we typically haves'15 Å and l i'2500 Å
~which is about 167s!. These put the value ofL at approxi-
mately 8.33105 Å or 5.63104s at temperatures close t
T50.

Although the model described above puts no restrict
on the number of layers that can be considered, we s
limit our present investigation to stacks with thicknesses
aboutl i or less. The thicknesses of high-temperature sup
conducting thin films are often less than 200 layers.

III. COUPLING FORCE BETWEEN 2D
PANCAKE LATTICES

Assume that a magnetic field applied perpendicular to
layers gives rise to a 2D pancake lattice in each layer.
equilibrium, all these lattices are in perfect registry along
z direction ~i.e., the pancakes form vertical stacks.! The av-
r

s.

n
all
f
r-

e
t
e

erage flux densityB is equal tofo /A, whereA is the area of
a lattice unit cell.

Let us now pick two such lattices, one in layeri and the
other in layerjÞ i . From equilibrium, suppose that the lattic
in layer j is then displaced without any rotation relative
the lattice in layeri . Denote this displacement bydj . What is
the coupling force between two such pancake lattices?

To answer the above question, let us first focus our att
tion on one pancake from each of the two layers. Choose
z axis to be the axis of the pancake in layeri so that the other
pancake has coordinatesr j5(r j ,w j ). Let K (r j , j ,i ) be the
sheet current density generated by the pancake in layerj at
the position of the pancake in layeri . The force exerted on
the latter by the former pancake is

F~r j , j ,i !5K ~r j , j ,i !3~fo /c!ẑ ~14!

for a magnetic field in the1z direction. Using the results
obtained in the previous section, we find that the above eq
tion can be written as

F~r j , j ,i !5 r̂~w j !
fo
2

2p2L2E
0

`

dq
J1~qr j !

q
C~q, j ,i !, ~15!

wherer̂(w j )5 îcoswj1 ĵsinwj and

C~q, j ,i !5
sinhqs Z~q,i , j !

g~q!2h~q,N212 j !2h~q, j !
. ~16!

Note thatZ(q,i , j )5e2Qi , j u i2 j us in Eq. ~16!. F(r j , j ,i ) is an
attractive force that tends to bring the two pancake vorti
into alignment. This can be shown explicitly whenr!l i and
0,u i2 j us!l i , for which Eq.~15! reduces to

F~r j , j ,i !'r̂~w j !S fo

2pL D 2Ar j
21u i2 j u2s22u i2 j us

r j
,

~17!

with the unit vectorr̂(w j ) pointing from thez axis ~passing
through the center of pancakei ) to the vertical axis through
the center of pancakej .

Analogous to the approach taken in Refs. 25–27, we t
write the coupling force on a pancake in layeri due to its
interaction with the vortex lattice in layerj as a sum over
reciprocal lattice vectorsg:

Fc~dj , j ,i !5
1

A(
gÞ0

G~g, j ,i !eig•dj . ~18!

The vectorG(g, j ,i ) in the above equation is the 2D Fourie
transform ofF(r , j ,i ):

G~g, j ,i !5E d2re2 ig•r F~r , j ,i !. ~19!

We can evaluateG explicitly with the aid of Eq.~15!. This
evaluation yields

G~g, j ,i !52
ifo

2

pL2

g

g3
C~g, j ,i !, ~20!

with g denoting the magnitude ofg. Observe that
G(2g, j ,i )52G(g, j ,i ). Therefore,
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55 6639MAGNETIC COUPLING OF TWO-DIMENSIONAL . . .
Fc~dj , j ,i !5
fo
2

pL2A2(
gÞ0

g

g3
C~g, j ,i !sin~g•dj !. ~21!

The above result is particularly convenient for the case
high magnetic fields~i.e., fields in the order of a tesla.! For
this case, only a few reciprocal lattice vectors are neede
obtain a good approximate value for the coupling force.

The opposite limit is the case of very weak magne
fields and displacementsdj that are much smaller than th
nearest-neighbor distance of the pancake lattices. One
show from the above results that

lim
B→0

Fc~dj , j ,i !5F~dj , j ,i !. ~22!

The coupling force thereby reduces to a pairwise interac
between pancake vortices.

IV. TRANSPORT CURRENTS AT THE TOP
AND BOTTOM LAYERS

Consider the special case when the 2D pancake latt
discussed in the previous section are perfect triangular
tices. Leta denote the nearest-neighbor distance in each
tice. The areaA of a unit-cell parallelogram is therefor
equal toa2A3/2. At equilibrium with a perpendicular mag
netic field, we had noted that the pancake lattices in
different layers will all be in perfect registry with one an
other.

But suppose we apply equal but oppositely directed sh
currents to the top and bottom layers. Lorentz forces aris
from these currents will then move the top and bottom p
cake lattices from their equilibrium positions. We shall on
consider currents that preserve the original orientations
both top and bottom lattices. Such displacements will th
cause the other lattices in the interior layers to move, keep
their orientations unchanged. If the magnitude of the app
currents is not too large, then all the lattices in the differ
layers will inevitably stop moving as they relax to new p
sitions. In these new locations, the net force on any of
lattices will once again be zero.

For convenience, let us restrict the present discussio
an odd number of layers. LetM be a positive integer, suc
that the total numberN of superconducting layers is equal
2M11.

Let us also restrict our attention to a set ofN pancakes
whose equilibrium positions are aligned along the direct
perpendicular to the layers. Choose the axis of this stac
pancakes as thez axis. As before, we take the bottom lay
to be the planez50.

For simplicity, assume that all lattice displacements oc
only along a certain nearest-neighbor direction. Choose
x axis to be along this direction. This corresponds to mak
the transport currents at the top and bottom layers flow p
allel to they axis. Refer to they components of the surfac
current densities in the top and bottom layers asKy

top and
Ky
bot respectively, such thatKy

top52Ky
bot. ~See Fig. 2.!

In order to compute the final displacements of the p
cakes described above, it is convenient to begin by disp
ing the top and bottom lattices to new positionsxN21 and
x0, respectively, withxN2152x0. Keeping these lattices
f
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fixed to their new positions, we then allow the lattices in th
interior layers to relax until the full force-balanced configu
ration of pancakes is established.

Let xi be thex coordinate of the pancake in layeri . If we
neglect terms involving the 2D pancake mass, we arrive
the following force balance equations for pancake lattices
the interior layers: for 1< i<N22,

(
jÞ i

Fcx~xj2xi , j ,i !5h ẋi . ~23!

Summation symbols like( jÞ i indicate that we exclude
j5 i from the summation range 0< j<N21.Fcx is the com-
ponent ofFc along the nearest-neighbor axis andh is the
viscous drag coefficient. Finally,ẋi is the time derivative of
xi .

As the system approaches its final force-balanced co
figuration, all lattice motions in the interior layers cease:

lim
t→`

ẋi50 ~24!

for 1< i<N22. To obtain the final displacements of th
N22 pancake lattices in the interior layers, we must ther
fore solve theN22 equations in Eq.~23! self-consistently,

FIG. 2. 2D triangular pancake lattices in a finite stack of th
superconducting films with equal but oppositely directed transp
currents flowing in the top and bottom layers. For simplicity, on
the case of five layers is illustrated. The 2D pancake lattices in
different layers are assumed to interact with each other only
magnetic coupling. They components of the surface current dens
ties in the top and bottom layers areKy

top andKy
bot , respectively,

with Ky
top52Ky

bot . Pancakes drawn in solid lines correspond to th
case when no sheet currents are applied. The pancakes outline
dashed lines correspond to a force-balanced configuration ass
ated with nonzeroKy

top andKy
bot . By symmetry, the pancakes in the

central layern52 are unaffected by equal but oppositely directe
surface currents in the top and bottom layers. Thez axis goes
through five pancakes whose equilibrium positions lie along a co
mon vertical. A sketch of these same five pancakes is shown w
the top and bottom surface currents turned on~their resulting force-
balanced positions connected by dashed lines!.
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subject to theN22 boundary conditions in Eq.~24!. Actu-
ally, we can reduce this problem toM21 equations in
M21 unknowns since, by symmetry,xM50 for all time and
x2M2 i52xi for 0< i<M21.

The equations that determine the force balance on the
and bottom vortex lattices are as follows: for the botto
layer, i50,

(
jÞ0

Fcx~xj2x0 , j ,0!52
fo

c
Ky
bot; ~25!

for the top layer,i5N21,

(
jÞN21

Fcx~xj2xN21 , j ,N21!52
fo

c
Ky
top. ~26!

In other words, for the top and bottom pancake lattices,
Lorentz force produced by eitherKy

top or Ky
bot is exactly bal-

anced by the coupling forces due to the pancake lattice
the other layers. Having self-consistently calculated the fi
displacements of the interior pancake lattices, we can t
use either Eq.~25! or Eq.~26! to solve for the applied surfac
current densities flowing in the outermost layers.~Recall that
Ky
top52Ky

bot.)
The full numerical solution to the problem outlined abo

and other related results are discussed in the next sectio

V. NUMERICAL RESULTS AND DISCUSSION

In many of the succeeding figures, we express surf
current densities in units ofcfo /L

2. For s'15 Å and
L'5.63104s, this unit is approximately 30 mA/cm.

Figure 3 shows plots ofKy
bot, the y component of the

surface current density in the bottom layer, as a function
the bottom lattice displacementx0 relative to equilibrium.
The magnetic field perpendicular to the layers is 0.1 T . This
is equivalent to having a pancake lattice spacinga of about
103s. The range of values forx0 spans half the lattice spac
ing. The curves can be extended antisymmetrically ab
x05a/2 to cover the full periodic interval@0, a#. Plots cor-
responding to 3, 5, 11, 51, 101, and 151 layers are giv
Recall that the value ofl i is taken to be about 167s for
Bi-2212; hence, the values ofN considered range from
around 2–91 % percent of the value ofl i .

When the applied currents are small, the lattices are a
to rearrange themselves so that the forces on the top
bottom pancakes arising from these currents are cancelle
the forces exerted by the lattices in the interior. But as ev
curve in Fig. 3 clearly shows, there is a maximum surfa
current density, the decoupling surface current densityKd ,
above which the interior pancakes are unable to gene
forces on the top and bottom lattices that cancel the for
due to the applied currents. The sections of the curves
which Ky

bot versusx0 have negative slopes~dashed! corre-
spond to unstable force-balanced configurations of panc
lattices.

Figure 4 shows a few stable configurations for t
N5101 case in Fig. 3. Notice that the scales used for thx
andz axes are different. For brevity, only one pancake fro
each layer is shown; these pancakes would form a stra
stack along thez direction in the absence of the applie
op
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currents. The stack with the largest bottom lattice displa
ment alongx approximately corresponds to the configurati
at maximum surface current density for 101 layers in a 0.
perpendicular field.

What is immediately striking about Fig. 4 is how far th
top and bottom lattices are displaced, compared with
relatively small displacements of the interior lattices. If t
x and z axes were identically scaled, the pancakes in
interior layers would appear almost vertically aligned, wh
the top and bottom pancakes would look quite dissocia
from the rest of the stack. Note, however, that the top a
bottom pancakes are not really dissociated since they are
magnetically coupled to the pancakes in the interior.

Figure 5 shows semilog plots of the decoupling surfa
current densityKd as a function of the magnitude of th
magnetic field applied perpendicular to 101 superconduc
layers. The range of field values represented is between
and 1.0 T. For greater detail, we have included an expan
view of that portion of the curve close to the zero-field lim

The decoupling surface current densityKd decreases
monotonically with increasing field throughout the enti
range represented. Whereas the current density at 0.001
a significant 77% of the zero-field value, the current dens
at 0.1 T is only around 15%. At 1.0 T, the decoupling curre
density is reduced to 4% of its value at zero field.

Finally, Fig. 6 gives plots of the decoupling surface cu
rent density as a function ofNs. Curves forB50 T, 0.01 T,
and 0.10 T perpendicular fields are shown. The last t
fields correspond to values fora of approximately 326s and
103s, respectively.

As illustrated quite clearly by the three curves in Fig.

FIG. 3. Plots of the bottom layer surface current densityKy
bot

versus the bottom lattice displacementx0 for 3, 5, 11, 51, 101, and
151 layers. A 0.1 T magnetic field is applied perpendicular to
layers, such thata5103.02s.
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55 6641MAGNETIC COUPLING OF TWO-DIMENSIONAL . . .
the decoupling surface current densityKd for a given perpen-
dicular fieldB approaches a saturation value as the num
of layers is increased. Moreover, this saturation current d
sity increases with decreasing field before it finally a
proaches a constant value in the zero-field limit.

For what range ofNs values is saturation achieved for
given perpendicular magnetic field? For the zero-field cu
(a→`) in Fig. 6, we see that this saturation is reached
Ns*O(l i). This can be understood as follows. In Ref. 20
was shown that a pancake in one layer of an infinite stac
effectively screened by the neighboring layers within a d
tance ofl i . Now, consider a finite stack of pancakes, one
each superconducting layer. If the number of layers exce
2l i /s, we expect that the pancakes deep in the interior w
have no interaction with the top and bottom pancakes.
top or bottom pancake cannot couple to an interior panc
corresponding to a certain layer if that layer is at a dista
greater thanl i .

The situation described above is certainly valid for lo
perpendicular magnetic fields. But what happens at h
enough fields, such that the 2D lattice constanta is smaller
thanl i? For the case ofa→`, each layer has at most on
pancake that can interact with a top or bottom pancake; b
a,l i , this is no longer true.

As an illustration, consider a pancake belonging to
lattice in the top layer. Ifa is significantly smaller thanl i , a

FIG. 4. Force-balanced configurations of 101 pancakes~each
belonging to a 2D triangular lattice in each layer! in the presence of
surface current densitiesKy

top andKy
bot flowing in the top and bottom

layers, respectively. We assume thatKy
top52Ky

bot . A 0.1 T mag-
netic field is applied perpendicular to the layers, such t
a5103.02s. The magnitudes of the top and bottom surface curr
densities considered correspond to bottom lattice displacemen
5.0s, 10.0s, and 18.41s from equilibrium~i.e., a straight stack!. The
x axis is expanded relative to thez axis to show greater detail.
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sizable number of pancakes in the layer directly below
uppermost lattice will be within a distancel i from the top
pancake. This is also true for a successively smaller num
of interior pancakes as one continues on to the layers fur
down the stack.

Thus, we would expect the strongest coupling with a p
cake in the uppermost lattice to come from pancakes belo
ing to layers a distance less thanl i from the top. But how
much less thanl i? Although the situation is quite compli
cated, the two curves in Fig. 5 for the case ofa,l i show
that this distance isO(a).

Order of magnitude estimates can be obtained analytic
if, to lowest order, we ignore the effects arising from t
finite thickness of the superconducting stack. The case
infinite thickness has been worked out in Ref. 20; supp
that we use the results obtained from this calculation to
proximate the interaction between 2D pancake lattices fo
finite stack of superconducting layers. To further simpl
matters, we assume that all the interior pancake lattices a
perfect registry for all values of top and bottom lattice d
placements. From what has been discussed in connec
with Fig. 3, we see that the last assumption is a reason
approximation.

Let us apply the above approximation to the zero-fie
limit. In this limit, we have argued that the characteris
thickness for which the value ofKd saturates is of the orde
of l i . For relatively thin samples, (N21)s!l i , this ap-
proximation yieldsKd;(cfo/4p2L2)(N21), whereas for

t
t
of

FIG. 5. Semilog plots for the magnetic field dependence of
decoupling surface current densityKd ~applied in opposite direc-
tions to the top and bottom layers! needed to magnetically decoup
the outermost 2D pancake lattices from those in the interior. T
number of layers is 101. The value ofKd in the zero-field limit is
included.
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the case of relatively thick samples, (N21)s@l i , it yields
Kd;(cfo/4p2L2)(l i /s). With 11 layers andl i'167s, the
former estimate gives a value of about 7.5 mA/cm, which
comparable with the numerically computed value of appro
mately 6.9 mA/cm. The latter estimate for the same value
l i is about 126 mA/cm, which is slightly over twice the n
merically calculated value of approximately 60 mA/cm.

For finite values ofB, we can argue, using the same a
proximation, thataA3/4p;0.14a is the characteristic thick
ness for which the value ofKd saturates. Moreover, we ca
show thatKd;(cfo/4p2L2)(N21) whenNs,0.14a, and
Kd;(cfo/4p2L2)(0.14a/s) when Ns.0.14a. Assume a
0.1 T field corresponding toa'103s. The first estimate,
valid for relatively thin samples, equals approximate
1.5 mA/cm for 3 layers andl i'167s. This is fairly close to
the numerically computed value of 1.0 mA/cm. The seco
estimate, involving relatively thick samples, is abo

FIG. 6. Dependence onNs of the decoupling surface curren
densityKd ~applied in opposite directions to the top and botto
layers! needed to magnetically decouple the outermost 2D panc
lattices from those in the interior. Curves are given forB50 T,
0.01 T, and 0.10 T fields applied perpendicular to the layers.
values ofa corresponding to the two nonzero fields are 325.77s and
103.02s, respectively.
O

D

s
i-
f

-

d
t

11 mA/cm for the same value ofl i . The corresponding
value obtained numerically is approximately 6 mA/cm.

VI. SUMMARY

In this paper, we studied the magnetic coupling betwe
2D pancake vortices in a stack ofN superconducting films.
The effects of Josephson coupling, thermal fluctuations,
pinning were not taken into account. We considered a pai
2D pancake vortex lattices residing in different layers, bo
having the same structure and orientation, and displaced
tive to each other. An analytical expression was obtained
the coupling force on a pancake in one lattice due to
interaction with the pancakes in the other vortex lattice. A
suming perfect 2D triangular pancake lattices in each lay
we investigated the case when equal but oppositely dire
surface current densities were applied to the top and bot
layers. For simplicity, the surface current directions we
chosen such that all lattice displacements were along
nearest-neighbor direction. The results were as follows.

If the magnitude of the applied surface current densit
was set above a certain valueKd , then the top and bottom
2D pancake lattices decoupled from the rest. Below the
coupling surface current densityKd , stacks of 2D pancake
vortices formed. These stacks did not form uniformly tilte
lines. Instead, the displacements of the top and bottom p
cakes were shown to be large compared with those of
interior pancakes.

For fixedN, the decoupling surface current density d
creased asB was increased~i.e., as the 2D pancake lattic
constanta was decreased!. For fixedB, the decoupling sur-
face current density initially increased with increasingN, and
then attained a saturation value. Ifa,l i , this saturation
occured whenNs;O(a). If a.l i , saturation was achieve
for Ns;O(l i).

An immediate extension of our approach is the study
the dynamics of the pancake lattices in Josephson-decou
layers with uniform pinning, in the presence of a transp
current in one of the outermost layers.35 This extension is
relevant to dc flux transformer experiments done on hi
Tc superconductors, a few of which we have already m
tioned in the Introduction. With our approach, theoretic
V-I curves can be computed,35 and these can then be com
pared with experimental data to test the validity and limi
tions of our model.
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